Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei Wang, ${ }^{\text {a }}$ * Ning-Ning Pan ${ }^{\text {a }}$ and Bing Zhao ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China, and
${ }^{\mathbf{b}}$ School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
tju_chemistry@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.133$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,3-Bis[(1-phenyl-1H-tetrazol-5-ylsulfanyl)methyl]quinoxaline

The title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{10} \mathrm{~S}_{2}$, crystallizes with two independent molecules in the asymmetric unit. The two terminal (1-phenyltetrazol-5-yl)sulfanyl groups adopt a trans configuration with respect to the central quinoxaline ring system in both independent molecules.

Comment

To date, a large number of flexible or rigid chain-linked dithioether ligands containing N-heterocyclic groups have been synthesized and investigated, due to their diverse coordination capabilities and the important properties of their metal complexes (Zheng et al., 2003; Bu et al., 2002; Hong et al., 2000). Earlier studies reported that several tetrazole derivatives possess varied pharmacological properties (Juby et al., 1968, 1982). A new tetrazole derivative, the title compound, (I), has been synthesized and its crystal structure is presented here.

(I)

The asymmetric unit of compound (I) contains two independent molecules, A and B. The two terminal (1-phenyl-1,2,3,4-tetrazol-5-yl)sulfanyl groups adopt a trans configuration with respect to the central quinoxaline ring system in both molecules A and B (Fig. 1). In molecule A, the planar quinoxaline ring system makes dihedral angles of 11.5 (3) and 8.8 (3) ${ }^{\circ}$ with the two tetrazolyl rings, indicating that the three groups are approximately coplanar. A similar result is also observed in molecule B. In molecule A, the two terminal phenyl rings make a dihedral angle of $39.5(3)^{\circ}$, while in molecule, B, the dihedral angle is 19.2 (2) ${ }^{\circ}$.

Due to $\pi-\pi$ conjugation, the $\mathrm{Csp}{ }^{2}-\mathrm{S}$ bonds, i.e. $\mathrm{S} 1-\mathrm{C} 1$, $\mathrm{S} 2-\mathrm{C} 18, \mathrm{~S} 3-\mathrm{C} 25$ and $\mathrm{S} 4-\mathrm{C} 42$, are significantly shorter than the $\mathrm{Csp}{ }^{3}-\mathrm{S}$ bonds, i.e. $\mathrm{S} 1-\mathrm{C} 8, \mathrm{~S} 2-\mathrm{C} 17, \mathrm{~S} 3-\mathrm{C} 32$ and $\mathrm{S} 4-$ C 41 (Table 1). The average lengths of the $\mathrm{Csp}{ }^{2}-\mathrm{S}$ and $\mathrm{Csp}{ }^{3}-$ S bonds are 1.732 (3) and 1.807 (3) Å, respectively, which are comparable with those reported in the literature (Wang et al., 2004, 2005).

Received 31 March 2006
Accepted 7 June 2006

Experimental

A solution of 2,3-bis(bromomethyl)quinoxaline ($1.58 \mathrm{~g}, 5 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$ was added dropwise to a mixture of 1-phenyl-5-thio-1,2,3,4-tetrazole $(1.96 \mathrm{~g}, 11 \mathrm{mmol}), \mathrm{KOH}(0.62 \mathrm{~g}, 11 \mathrm{mmol})$ and ethanol (5 ml). The reaction mixture was then stirred for 24 h at room temperature. The precipitate which formed was filtered off, washed with water and recrystallized from ethanol (yield 70\%, m.p. 446$447 \mathrm{~K})$. Analysis, calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{10} \mathrm{~S}_{2}$: C 56.45, H 3.55, N 27.43%; found: C 56.41, H 3.60, N 27.37%. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{10} \mathrm{~S}_{2} \\
& M_{r}=510.62 \\
& \text { Triclinic, } P \overline{1} \\
& a=6.3813(18) \AA \\
& b=16.758(5) \AA \\
& c=22.214(6) \AA \\
& \alpha=96.538(5)^{\circ} \\
& \beta=92.822(4)^{\circ} \\
& \gamma=95.274(5)^{\circ}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.910, T_{\text {max }}=0.969$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.133$
$S=0.99$
9645 reflections
649 parameters
H -atom parameters constrained

$$
\begin{aligned}
& V=2345.8(12) \AA^{3} \\
& Z=4 \\
& D_{x}=1.446 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.26 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.32 \times 0.20 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

13253 measured reflections 9645 independent reflections 4834 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0533 P)^{2}\right. \\
& \quad+0.326 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

S1-C1	$1.731(3)$	S3-C25	$1.726(3)$
S1-C8	$1.810(3)$	S3-C32	$1.810(3)$
S2-C18	$1.736(3)$	S4-C42	$1.736(3)$
S2-C17	$1.807(3)$	S4-C41	$1.801(3)$
N4-C1-N1	$108.4(2)$	N14-C25-N11	$108.7(2)$
N4-C1-S1	$126.8(2)$	N14-C25-S3	$125.8(2)$
N10-C18-N7	$108.7(2)$	N20-C42-N17	$109.0(2)$
N10-C18-S2	$126.9(2)$	N20-C42-S4	$126.8(2)$

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

All H atoms were positioned geometrically and refined as riding $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent $)$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT (Version 6.22) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X. H., Chen, W., Du, M., Kumar, B., Wang, W. Z. \& Zhang, R. H. (2002). Inorg. Chem. 41, 437-439.
Hong, M. C., Zhao, Y. J., Su, W. P., Cao, R., Fujita, M., Zhou, Z. Y. \& Chan, A. S. C. (2000). Angew. Chem. Int. Ed. 39, 2468-2470.

Juby, P. F., Hudyma, Y. W. \& Brown, M. (1968). J. Med. Chem. 11, 111-117.
Juby, P. F., Hudyma, Y. W., Brown, M., Essery, J. M. \& Partyka, R. A. (1982). J. Med. Chem. 25, 1145-1150.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, W., Liu, H.-M. \& Zhang, W.-Q. (2004). Acta Cryst. E60, o1107-o1109.
Wang, W., Zhao, B., Zheng, P.-W. \& Duan, X.-M. (2005). Acta Cryst. E61, o1163-o1164.
Zheng, Y., Du, M., Li, J. R., Zhang, R. H. \& Bu, X. H. (2003). J. Chem. Soc. Dalton Trans. pp. 1509-1514.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

